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A study is made of the influence of the mass transfer of water on the temperature field occurring in cartilagi-
nous tissue under the action of laser pulses. Two different mechanism of mass transfer of water in cartilagi-
nous tissue (molecular-diffusion mechanism and laminar flow) have been considered in solving heat- and
mass-transfer equations. The calculations have shown that the maximum temperature is attained inside the
sample because of the evaporation of water from the biological-tissue surface. The influence of different pa-
rameters of laser radiation and mass transfer of water on the surface temperature, on the maximum value of
the temperature, on the position of the temperature maximum, and on the characteristic time at which the dif-
fusion-limited relaxation of stresses in the cartilaginous tissue occurs has been analyzed.

Introduction. In recent years, the attention of researchers has been attracted to the thermal nonablation action
of lasers on biological tissues, for example, with the aim of relaxing stresses and changing the shape of cartilages
("shaping") [1]. Water is the main component of biological tissues (in cartilaginous tissue, its concentration amounts to
about 80%); therefore, evaporation in laser heating influences not only its spatial distribution but also the temperature
field. Whereas the influence of the evaporation effect on the temperature field has been investigated to a certain extent
[2], the features associated with mass transfer and with the resulting deficiency of water in the surface layers of the
laser-irradiated tissue have not been adequately studied.

In this work, we make a theoretical analysis of the temperature field induced by laser radiation with allow-
ance for the mass transfer of water in cartilaginous tissue. The applied objective of the present investigation is to de-
velop theoretical foundations of the medical procedure of changing the shape of cartilaginous tissue by the action of
laser radiation. The relaxation of stresses in cartilaginous tissue occurs in short-duration laser heating to a temperature
above T∗  D 70oC [1, 2]. If the heating of the tissue above T∗  is not too strong or long, denaturation and destruction
of biopolymers are absent (or insignificant) [1]. Therefore, in the present investigation, the emphasis will be on mod-
erate intensities of laser heating for which the temperature is no higher than 100oC as a rule.

Initial Equations and the Approximations Used. Let us consider the processes of transfer of heat and mass
in an irradiated plane-parallel plate on the basis of the equations of heat conduction and diffusion:
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Below we will investigate the molecular-diffusion mechanism of mass transfer for which
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D = D (T) = D0 exp (− Ea
 ⁄ RT) , (3)

and the mechanism of laminar flow of water in the pores which is described by Darcy’s law [3, 4]. It is common
knowledge [5] that different mechanisms of mass transfer can be described in many cases by Eq. (2). For the laminar
flow the temperature dependence of the diffusion coefficient is attributed to the temperature dependence of the viscos-
ity of water (see below).

Equations (1) and (2) satisfy the initial and boundary conditions

T (x, 0) = T0 ,   m (x, 0) = m0 ; (4)

(∂T ⁄ ∂x) x=0,x=l = δ (x) m2 ⁄ 3 (vQv
 ⁄ λ) exp [− (Q ⁄ RT (x, t))] ; (5)

(∂m ⁄ ∂x) x=0,x=l = (λ ⁄ QvD) (∂T ⁄ ∂x) x=0,x=l . (6)

Boundary conditions (5) and (6) describe the influence of the effect of evaporation of water on the tempera-
ture field and the space-time distribution of the water. It is precisely allowance for this effect that differentiates the
present work from the traditional consideration of the action of laser radiation on biotissues. See [6] for the derivation
of boundary condition (6).

The formulation of the problem in the form (1)–(6) assumes the following approximations: 1) surface cooling
of the sample is exclusively due to the evaporation of water; cooling by air (blowing) is assumed to be small and it
is disregarded; 2) the diameter of a laser beam is much larger than all the remaining characteristic geometric dimen-
sions of the problem (thickness of the sample, characteristic thickness of the layer where thermal absorption occurs),
which enables us to confine ourselves to a one-dimensional approximation; 3) the coefficients of thermal diffusivity
and heat capacity and the functional parameters of the mechanism of mass transfer are independent of the coordinates,
time, and temperature; 4) the scattering of light in the tissue is disregarded and only its absorption by periodic laser
pulses is allowed for; therefore, the function f(x, t) characterizing the heating of the sample by laser radiation has the
form f(x, t) = (Eα  ⁄ Cρ) exp (−αx) θ(t), where θ(t) = 1 for 0 ≤ t ≤ τp and θ(t) = 1 for τp ≤ t ≤ 1 ⁄ fr; this function is pre-
scribed on the segment [0, 1 ⁄ fr] and is extended with a period 1 ⁄ fr to the region [0 ≤ t ≤ t1]; when t > ti, θ(t) = 0; the
functions T(x, t) and m(x, t) are defined in the region [0 ≤ x ≤ l] × [0 ≤ t ≤ t0]; 5) the mechanism of diffusion of water
is independent of the "prehistory" of the sample and it remains constant in the process of laser action.

Methods of Solution of the Equations. Problem (1)–(6) was solved by numerical methods. To construct the
computational model we used the principle of discretization of the initial problem, i.e., the continuous functions of
state of the sample (temperature, concentration of water) were approximated by step quantities considered to be con-
stant within each separate coordinate cell and stepwise changing in passage to the neighboring cell. The step of the
coordinate grid was selected using software with such a condition that the relative value of the step of the function at
the boundary of the coordinate cells does not exceed the value prescribed in advance (discreteness coefficient).

We considered independent processes of absorption of laser radiation by the sample, evaporation of water
from the surface, heat transfer, and motion of water inside the sample. For the step functions of state these processes
were described by difference equations with a step corresponding to that of the coordinate grid. In the case where the
characteristics of the process at the boundary of two cells are influenced by the state of the latter (for example, in cal-
culating the motion of water from one cell to the other in accordance with the diffusion law when the diffusion coef-
ficient is independent of the temperature) we employed in the equations a value intermediate between the values in the
neighboring cells.

When the initial conditions are fixed, the described system of difference equations has a single solution; one
can find this solution by direct calculation, composing the tables of state of the sample for any instant of time accurate
to a step [7, 8]. Check of the results obtained with the use of different values of the calculation step and the discrete-
ness coefficient has shown that the solutions found are stable in relation to a variation in the discretization parameters
and to small variations of the initial data.
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To check the exactness of the numerical solution of the system of equations and to test the program we used:
1) test calculations on a finer difference grid and with a larger number of iterations; 2) check of the fulfillment of the
physical conservation laws associated with the fact that cooling is assumed to be due just to evaporation; the evapora-
tion of one mole of water causes a decrease in the internal energy of the sample by Q. Therefore, for the time t > ti
(after switching off the laser) we computed the discrete analogs of the integrals

S (t) = ∫ 
0

1

T (x, t) dx ,   M (t) = ∫ 
0

1

m (x, t) dx . (7)

The change in these quantities satisfies the relation ∂ S ⁄ ∂M  = Q ⁄ Cρ = const. The calculations showed that this
equality is observed with an accuracy of D1%.

Selection of the Design Parameters. In solving the problem, one should differentiate two types of parame-
ters: constant parameters (characterizing a given substance) and variable parameters the dependence on which is the
subject of investigation. For cartilaginous tissue the constant parameters are χ = 1.4⋅10−3 cm2/sec [9], m0 = 0.042
mole/cm3 [2], ν C 3⋅1010 Hz [2], Q = 44 kJ/mole [9], and T0 = 293 K.

For the diffusion model of mass transfer of water the diffusion coefficient was measured directly [9, 10]. Ac-
cording to [9], D C 7.1⋅10−7 cm2/sec at 300 K for the case where the Fourier factor is Fo = 4Dt ⁄ h2 ≥ 1. The diffusion
coefficient in the cartilaginous tissue was computed using the NMR pulse-gradient technique (for a content of water of
77% by mass) [10]; different values of this quantity as functions of the measurement time τ and the value of the pa-
rameter h/2 = (Dτ)1

 ⁄ 2 were obtained. Thus, at room temperature we had D = 1.2⋅10−5 cm2/sec for τ C 13⋅10−3 sec and
D = 1.0⋅10−5 cm2/sec for τ C 100 msec [10]. The reasons for the dependence of D on h (Fig. 1) are the difference in
the diffusion rates in different regions of the inhomogeneous cartilaginous tissue and the features of the measurement
procedure employed. Using NMR, we determine the average rate of diffusion for the selected volume, and since we
select a volume with a maximum signal (with a maximum value of D) the diffusion coefficient turns out to be larger
for small h and with increase in h the quantity D is averaged over the regions with high and low rates of diffusion.
Since we are interested in mass-transfer distances of about 0.1 mm, in the calculations we employed the following data
[9]: D0 = 0.119 cm2/sec and Ea = 30 kJ/mole.

In determining the diffusion coefficient for the model of laminar flow of water in cartilaginous tissue, the in-
itial information was provided by the experimental measurements of the coefficient of its flow [11] through a plate of
cartilaginous tissue under the action of the external pressure of water. The flow rate of water per unit time can be
written in the form q = ∆PA ⁄ (8µl). In converting from q to Def, we employed the equality vs

2 = (∂P ⁄ ∂x)/( ρw∂m ⁄ ∂x)
[4] and the Nernst law q = −DA(∂m ⁄ ∂x), whence ∂m ⁄ ∂x = vw

−2((∂P ⁄ ∂x) ⁄ ρw). The ratio q/(A(∂P ⁄ ∂x)) (at room tempera-
ture) has been measured experimentally in [11]. In combination with the above formulas, this enables us to determine
Def for the laminar flow (Def = 3.2⋅10−5 cm2/sec at T = 300 K). On model grounds we assume the Arrhenius depend-

Fig. 1. Effective coefficients of diffusion of water Def vs. root-mean-square dis-
tance h/2 traversed by the diffusing molecules. The figures in square brackets
are the numbers of the references in which the corresponding data have been
measured.
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ence on the temperature (3) at Ea = 13.5 kJ/mole and D0 = 7.2⋅10−3 cm2/sec for the effective diffusion coefficient in
laminar flow [12].

In this work, we have considered the following values of the variable parameters: α = 3–40 cm−1, fr = 5 and
10 Hz, l = 0.12–0.15 cm, E = 0.2–7 J/cm2, and ti = 6–12 sec.

Basic Results of the Calculations. Figure 2 shows the manner in which the surface temperature changes with
time for different values of the energy density, the absorption coefficient, and two different models of mass transfer.
The dependence of the temperature on the coordinate is presented in Fig. 3, whence it is seen that the maximum tem-
perature is attained deep in the sample. The temperature at the point of maximum also depends on the energy density,
the absorption coefficients, and the mass-transfer models (Fig. 4).

In [1, 2], it has been shown that heating of cartilaginous tissue above 70oC causes a sharp increase in the mo-
bility of individual segments of the structure of the cartilaginous matrix (for example, proteoglycans or their parts), which
leads to the relaxation of mechanical stresses and enables one to purposefully change the shape of the cartilages. There-
fore, the time t2 in which the temperature exceeds 70oC is an important characteristic of the process. The values of
t2 that correspond to the diffusion mechanism of mass transfer and in the model disregarding water motion (m = m0)
are given in Table 1.

For comparatively small coefficients of absorption (5–10 cm−1), allowance for the diffusion mass transfer of
water increases the time t2 by approximately 20% (%5%) relative to the case m = m0. For comparatively large coeffi-
cients of absorption (D40 cm−1), there can be such irradiation parameters where the quantity t2 strongly depends on

Fig. 2. Temperature of the irradiated surface vs. time for different mechanisms
of mass transfer and irradiation parameters: a) (l = 1.2 mm, f = 5 Hz, and α
= 20 cm−1): 1, 3) diffusion mechanism of mass transfer; 2, 4) m = m0; 1, 2)
I = 10 and 3, 4) 8 W/cm2; b) (l = 1.2 mm and α = 40 cm−1): 3, 6) diffusion
mechanism of mass transfer; 1, 4) m = m0; 2, 5) models of laminar mass
transfer; 1–3) I = 1.5 W/cm2 and f = 5 Hz and 4–6) 3 W/cm2 and 10 Hz.

Fig. 3. Temperature vs. coordinate after the completion of irradiation for dif-
ferent mechanisms of mass transfer (ti = 6 sec, α = 10 cm −1, f = 5 Hz, E =
2.5 J/cm2, and l = 1.2 mm): 1) m = m0; 2) laminar flow; 3) molecular diffu-
sion.
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the mechanism of mass transfer of water. For some of the parameters given in the table (see, for example, the second
line) a temperature of 70oC is not attained for all the considered mechanisms of mass transfer.

The distribution of the water density over the coordinate perpendicular to the surface of the sample is shown
in Fig. 5. It is clear from the curves that for the model of laminar flow the total amount of evaporated water is much
larger than for the model of molecular diffusion, although the degree of drying of thin surface layers is appreciably
higher for molecular diffusion. As the calculation shows, it takes a few seconds after the completion of irradiation for
this thin surface layer to be partially filled with water again.

The higher the concentration of water on the surface, the stronger the evaporation of it and the larger the dis-
tance of the point of temperature maximum from the irradiated surface. If we disregard the evaporation of water, the
temperature maximum lies on the surface. With allowance for the evaporation, it is at a somewhat larger distance from
the surface for the molecular diffusion, somewhat farther for the laminar water flow, and still farther for a constant
concentration of water (m = m0) (Fig. 5). We have calculated the value of X (maximum value of the difference of the
coordinates of the point of maximum in variation of the absorption coefficients from 5 to 20 cm−1 and the sample
thickness from 0.1 to 0.2 cm). The characteristic value of the difference X is in the interval 96–396 µm.

We can compare the rates of change of the temperature at the point of maximum of the temperature field for
m = m0 for the models of laminar and molecular-diffusion water flow in cartilaginous tissue. As long as the tempera-
ture rises, the derivative ∂T ⁄ ∂t has comparatively high but similar (in the cases in question) values at t < ti. After the
cessation of the laser irradiation of the sample, the period of cooling begins where the rate of change of the tempera-
ture is much lower than that during the irradiation. With neglect of the water motion, the cooling rate is 1.3–1.6 times
lower than in the model of laminar water flow. As far as the diffusion model is concerned, the rate of rise of the tem-
perature is much higher for this case than for m = m0. The rates of change of the temperature are significantly differ-

Fig. 4. Time dependence of the temperature maximum inside the sample of
cartilaginous tissue for different mechanisms of mass transfer (l = 1.2 mm): a)
(α = 3 cm −1 and f = 5 Hz): 1, 3) diffusion mechanism of mass transfer; 2,
4) m = m0; 1, 2) I = 35 and 3, 4) 25 W/cm2; b) (α = 40 cm−1 and f = 10
Hz): 1–3) diffusion mechanism of mass transfer; 4–6) m = m0; 7–9) law of
laminar flow; 1, 4, 7) ti = 6; 2, 5, 8) 10; 3, 6, 9) 12 sec.

TABLE 1. Values of t2 for Two Mechanisms of Mass Transfer (l = 0.12 cm)

α ti fr E t2, molecular diffusion t2, m = m0

5 6 5 2.4 2.96 2.58

10 6 5 1.2 0 0

5 6 5 3.2 7.76 6.62

10 6 5 1.6 3.72 3.28

5 6 5 4.0 10.82 8.84

10 6 5 2.0 7.42 6.40

40 10 10 0.3 2.9 0

40 12 10 0.3 6.3 0
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ent for comparatively large absorption coefficients (20–40 cm−1); conversely, for low values of the absorption coeffi-
cients the difference in the values of the derivatives is not so appreciable.

Discussion of the Calculation Results. Let us consider the influence of variable parameters (absorption coef-
ficients, laser-pulse repetition frequencies, energy densities, and characteristic dimension of the pores in the biomate-
rial) on the basic characteristics of the temperature field and the concentration fields of water.

In [2], it has been shown that with allowance for the evaporation of water from the biotissue the position of
the point of temperature maximum gradually moves from the irradiated surface to a point with coordinates W/α (W is
a number which is close to unity in order of magnitude). Since the sample is cooled from the surface, we can expect
a strong difference between two cases — those of low and high values of the parameter Z = α2χti: if Z < 1, the mass
transfer of water does not have a very strong effect on the temperature maximum (Fig. 4a). Otherwise (when Z >> 1),
allowance for the mass transfer significantly changes the value of the temperature maximum (Fig. 4b). In [2], we con-
sidered a model in which the concentration of water on the biotissue surface was constant. Of the three models con-
sidered in the present work and in [2], the temperature at the point of maximum (Fig. 4) grows most rapidly in the
case of the diffusion mechanism of transfer of water and appreciably more slowly within the framework of the model
of laminar flow; for the case m = m0, the temperature maximum reaches a quasistationary value.

The results presented in Fig. 2 can easily be explained. If there is no mass transfer, the surface temperature
rises more slowly than in other cases since the rate of cooling of the surface here is maximum. Within the framework
of the model of laminar flow, the concentration of water on the tissue surface is somewhat lower than for m = m0 (it
is limited by the inflow of the liquid from the internal layers); accordingly, the surface temperature grows somewhat
more rapidly. Molecular diffusion can ensure a substantially smaller inflow of water to the surface than laminar flow;
therefore, the surface temperature grows appreciably more rapidly. This is attributed to the fact that, although the
quantity D increases with temperature more rapidly for the molecular diffusion than for the laminar flow, for the tem-
perature interval in question (20 < T < 100oC) the coefficient of molecular diffusion is substantially smaller than the ef-
fective coefficient of diffusion of laminar flow. In the model of laminar flow, the effective diffusion coefficient is the
larger, the larger the characteristic dimension of the pores (Def D a2). For rather large a the quantity Def tends to the
coefficient of self-diffusion of water. Consequently, the larger the pore dimension, the closer the character of solution
to the solutions of [2].

The larger the absorption coefficient, the more important the role of the boundary conditions for the entire
temperature field. Most of the energy is released near the irradiated surface of the tissue, at a depth of about 1/α. The
maximum of the surface temperature is always attained by the end of the irradiation period (see Fig. 2). According to
[2], the stationary temperature is attained on the surface over a period of about 2/(α2χ) in the case m = m0. Further
irradiation virtually does not change this temperature. With allowance for the motion of water in the tissue, the surface
temperature (according to the calculations) is a quasistationary quantity growing with decrease in the average coeffi-

Fig. 5. Concentration of water vs. coordinate for different absorption coeffi-
cients and mechanisms of mass transfer: 1) molecular diffusion, ti = 6 sec, im-
mediately after the completion of irradiation; 2) laminar flow, α = 40 cm−1, f
= 5 Hz, E = 0.3 J/cm2, l = 1.2 mm, ti = 6 sec, immediately after the comple-
tion of irradiation; 3) laminar flow, α = 3 cm−1, f = 5 Hz, E = 0.7 J/cm2, l =
1.2 mm, ti = 6 sec, within 6 sec after the completion of irradiation.
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cient. Nonetheless, in this case, too, the stationary temperature is attained over a period of about 2/(α2χ), and further
irradiation changes it comparatively little. In the case of a very long irradiation, if 2 > 2 ⁄ (α2D) the surface temperature
smoothly changes the quasistationary value when the water in the bulk of the sample begins to be exhausted.

In considering the energy parameters of laser radiation (energy density and pulse repetition frequency), the
density of the irradiation-energy intensity I = frE is of importance (for the considered values of the parameters). The
larger the quantity I, all other parameters being equal, the higher the quasistationary surface temperature. The analo-
gous monotonically increasing dependence relates I to the temperature at the point of maximum.

In [2], it has been shown with the example of cartilaginous tissue that the temperature maximum is below the
irradiated surface and it substantially depends on the surface evaporation of water. Allowance for the mass transfer of
water preserves this situation qualitatively but the numerical parameters of the thermal field change. The temperature
maximum somewhat shifts toward the irradiated surface, although it does not reach it, as in the case where the evapo-
ration of water was totally disregarded. Since the relation χ >> D holds, the changes in the temperature field have two
characteristic times: one is directly related to heat transfer while the other, substantially longer, is related to the mass
transfer of water to the sample surface. With allowance for the mass transfer of water, there can be only the quasis-
tationary solution for the characteristic times α−2 << χt and α−2 >> Dt.

In closing, we discuss selection of the parameters which describe the laminar flow of water. In [11], the structure
of cartilaginous tissue is presented as a set of water-filled tubes of constant diameter α; the total volume of the pores are
equal to the volume fraction of water in the biotissue (C 80%). It is assumed that only half the tubes is directed so as to
ensure water flow in the direction which is of interest to us. Undoubtedly, the cartilaginous-tissue structure is substantially
more complex than this model. On the basis of the spectral dependence of the scattering coefficient (it has been denoted by
S(λ) in [13]), we can show that  for a D  0.1–2 µm the cartilage structure has a fractal character. Since the laminar liquid
flow in fractal structures has not been investigated, we confine ourselves to the model of [11]. The rate of water flowing in
a cylindrical channel is in proportion to q D a4 ⁄ µ. The total volume of the pores is fixed; therefore, the flow of water per
unit area is in proportion to the effective coefficient of diffusion Def D a2 ⁄ µ. At room temperature, the effective coefficient
of diffusion Def related to the laminar flow is 45 times smaller than the coefficient of molecular diffusion. Therefore, the
contribution of the latter is small when the water flow is considered. Assuming that µ = 1.0 MPa⋅sec (this is the value of
the dynamic viscosity of pure water at T = 25oC [12]), we obtain the estimate of the effective hydrodynamic tube diameter
a C 56⋅10−8 cm [11]. This estimate of the pore dimension is nearly an order of magnitude lower than the results of the
measurements [14] performed using an atomic-force microscope, where it has been shown that the distribution of the
diameters of the cartilaginous-tissue pores is in the range of a C (200–600)⋅10−8 cm. In our opinion, the difference in the
estimates of this quantity is attributed to the structure itself of the cartilaginous tissue the pores inside which are not
smooth channels. The walls themselves of these channels are sustained by the dipole–dipole interaction of proteoglycans.
The polar water molecules flowing in such "channels with obstacles" interact with the proteoglycans, which retards their
motion.

The viscosity coefficient for pure water µ decreases twice on heating from 20 to 55oC; for this reason we as-
sume that for the laminar flow the effective diffusion coefficient depends on the temperature. In the temperature range
0–100oC, the viscosity of water is described by the Arrhenius dependence with the activation energy given above [12].
In actual practice, water in cartilaginous tissue represents a solution of different substances, and accordingly its dy-
namic viscosity can strongly differ from the values for pure water. However, within the framework of the model cal-
culation, when the temperature dependence of the viscosity of water with substances dissolved in it is unknown we
have to confine ourselves to the data given in [12].

CONCLUSIONS

We have investigated the temperature field in cartilaginous tissue in the case of the action of IR-radiation
pulses on it. We have considered two possible models of mass transfer of water in the cartilaginous tissue (molecular
diffusion and the model of laminar flow) and have calculated the effective values of the diffusion coefficients for
them. It has been shown that the amount of evaporated water is substantially larger in the case of the laminar water
flow in the sample, where the effective diffusion coefficient is relatively large as compared to the molecular-diffusion
mechanism of mass transfer, for which D is substantially smaller, although in the latter case the concentration of water
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in the surface layer is appreciably lower than for the model of laminar flow. For the laminar flow the depth of a par-
tially dried layer is appreciably larger than for the case of molecular diffusion. If α2χti >> 1 and the density of the en-
ergy intensity I is constant, the temperature at the point of maximum increases most rapidly in the case of the
diffusion mechanism of transfer of water and much more slowly in laminar flow, while for a constant concentration of
water the temperature maximum reaches a constant (quasistationary) value comparatively rapidly. A similar relation is
observed for the irradiated-surface temperature if α2χti >> 1. The position of the point of maximum is close to the
value of (1/α). The characteristic distance between the points of maximum obtained with the use of different models
is in the interval 96–396 µm (absorption coefficients of 5 to 20 cm−1, sample thickness of 1 to 2 mm). As long as
the temperature rises, at t > ti the derivative ∂T ⁄ ∂t has comparatively high but similar (within the framework of differ-
ent models) values. The larger I, the larger the derivative ∂T ⁄ ∂t. The derivative is a positive quantity if not constant,
and ∂2T ⁄ ∂t∂I > 0. Conversely, for a constant concentration of water the cooling rate is 1.3–1.6 times higher than that
in the model of laminar water flow. The larger the absorption coefficient, the larger the portion of laser energy ex-
pended on evaporating water.

This work was carried out with assistance from the Russian Foundation for Basic Research (grant 02-02-
16246).

NOTATION

T = T(x, t), temperature, oC and K; T0, initial temperature, oC and K; T∗ , minimum temperature of denatura-
tion and relaxation of stresses in cartilages, oC and K; m = m(x, t), concentration of water in the biotissue,
mole/cm3; m0, initial concentration of water, mole/cm3; x, coordinate perpendicular to the sample surface, cm; x = 0,
coordinate of the irradiated surface; l, thickness of the sample, cm; t, running time, sec; X, value of the difference of
the coordinates of the point of temperature maximum in variation of different parameters, cm; h, root-mean-square dis-
tance traversed by the water molecules, cm; t = 0, instant of the beginning of irradiation; t0, calculation time, sec; ti,
duration of laser irradiation, sec; τp, laser-pulse duration, sec; t2, time in which T > T∗  (subscript 2 corresponds to the
"second" stage in laser irradiation of the sample, i.e., to the period of the denaturation reaction); D = D(T), effective
coefficient of diffusion of water in the biotissue, cm2/sec (it is denoted by Def for the laminar-flow model); D0, preex-
ponential factor of the diffusion coefficient, cm2/sec; Ea, diffusion activation energy, J/mole; R, universal gas constant;
Cρ, specific (in terms of volume) heat of the biotissue, J/(m3⋅K); λ, thermal conductivity, W/(m⋅K); χ, thermal dif-
fusivity, cm2/sec; Q, heat of evaporation of water, J/mole; Qv, Q ⁄ m0, heat of evaporation per unit volume, J/cm3; ν,
frequency of intermolecular vibrations of the water molecules, Hz; α, coefficient of absorption of laser radiation,
cm−1; fr, laser-pulse repetition frequency, Hz; E, density of the laser-pulse energy, J/cm2; I = Efr, density of the laser-
radiation intensity, W/cm2; q, flow rate of water per unit time, mole/(cm2⋅sec); ∆P, difference of the pressures of water
between the surfaces of the plate, dyn/cm2; A, part of the sample area occupied by the pores; µ, dynamic viscosity of
water, MPa⋅sec; vs, velocity of sound in the medium, m/sec; ρw, specific density of water, g/cm3; a, characteristic di-
mension of a pore, cm; function δ(x) = 1 for x = 0, δ(x) = −1 for x = l, and δ(x) = 0 for the remaining values of x;
S(λ), spectral dependence of the coefficient of scattering of the biotissue, cm−1. Subscripts: i, irradiation; p, pulse; ef,
effective; a, activation; v, volume; s, sound; w, water; r, repetition; ρ, density.

REFERENCES

1. E. Sobol’ (Sobol), A. Sviridov, A. Omel’chenko, V. Bagratashvili, M. Kitai, S. E. Harding, N. Jones, K. Jumel,
M. Mertig, W. Pompe, Yu. Ovchinnikov, A. Shekhter, and V. Svistushkin, Biotechnol. Genetic Eng. Rev., 17,
539–564 (2000).

2. E. N. Sobol’ (Sobol), M. S. Kitai, N. Jones, A. P. Sviridov, T. Milner, and B. Wong, IEEE J. Quant. Elec-
tronics, 35, 532–540 (1999).

3. E. Sobol’ (Sobol), in: Phase Transformations and Ablation in Laser-Treated Solids, Wiley, New York (1995),
p. 4.

4. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Ch. 2, Moscow (1986).
5. A. V. Luikov, Heat and Mass Transfer: Handbook [in Russian], Moscow (1972).

350



6. T. Kumada, in: N. P. Cheremissinoff (ed.), Handbook of Heat and Mass Transfer, Vol. 1, New York (1992),
pp. 231–250.

7. A. A. Samarskii, The Theory of Difference Schemes [in Russian], Moscow (1977).
8. W. R. Wasow and G. E. Forsythe, Finite-Difference Methods for Partial Differential Equations [Russian trans-

lation], Moscow (1963).
9. V. N. Bagratashvili, E. N. Sobol’ (Sobol), A. P. Sviridov, V. K. Popov, A. I. Omel’chenko, and S. M. Howdle,

J. Biomechanics, 30, No. 8, 813–817 (1997).
10. R. Knauss, J. Schiller, G. Fleischer, J. Karger, and K. Arnold, Magn. Res. Medicine, 41, 285–299 (1999).
11. V. C. Mow, M. H. Holmes, W. M. and Law, J. Biomechanics, 17, No. 5, 377–394 (1984).
12. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Concise Handbook on Chemistry [in Russian], Kiev

(1987).
13. N. V. Bagratashvili, A. P. Sviridov, E. N. Sobol’ (Sobol), and M. S. Kitai, Proc. SPIE, 3254, 398–408 (1997).
14. E. Sobol’ (Sobol), A. Omel’chenko, M. Mertig, and W. Pompe, Lasers Med. Sci., 15, 15–23 (2000).

351


